Triosmium Cluster Derivatives of [60]Fullerene
Joon T. Park,* Jeong-Ju Cho and Hyunjoon Song
Department of Chemistry, Korea Advanced Institute of Science & Technology, Taejon 305-701, Korea

Triosmium carbonyl cluster derivatives of [60]fullerene, Os\textsubscript{3}(CO\textsubscript{11})(\eta5-C\textsubscript{60}), Os\textsubscript{3}(CO\textsubscript{10})(NCMMe)(\eta2-C\textsubscript{60}), Os\textsubscript{3}(CO\textsubscript{10})\textsubscript{2}(PPPh\textsubscript{3})(\eta2-C\textsubscript{60}) and Os\textsubscript{3}(CO\textsubscript{9})(PPPh\textsubscript{3})\textsubscript{2}(\eta2-C\textsubscript{60}) are described.

In recent years the organometallic chemistry of [60]fullerene has attracted much attention concerning the effect of metal coordination on the properties of C\textsubscript{60}.1 The first such complex (C\textsubscript{60})(Os\textsubscript{4}H\textsubscript{4}4-Bu(C\textsubscript{6}H\textsubscript{4}L\textsubscript{5}32), an osmate ester with C-O-Os bonds was reported by Hawkins and coworkers.2 However, only one example with a direct metal-C\textsubscript{60} bond, (\eta2-C\textsubscript{60})PnP(PPPh\textsubscript{3})\textsubscript{2}, was reported by Fagan et al.3 Recent reports of other metal coordinated [60]fullerene complexes have included those of Ta,4 Mo,4 Fe,4 Rh,6,7 Ir,6,7 Ni8 and Pd,8 in which all the mononuclear metals are bound in an \eta2-fashion at the 6-6 ring fusion. Herein, we report the preparation, isolation and characterization of triosmium cluster derivatives of \eta2-C\textsubscript{60} as is shown in Scheme 1.

A toluene solution of Os\textsubscript{3}(CO\textsubscript{11})(NCMe) and C\textsubscript{60} (1 equiv.) was heated at 80 °C for 5 min. The solvent was evaporated and the residue purified by preparative TLC (silica gel, hexane : toluene, 2:1) at low temperature (ca. −15 °C) to afford a black, microcrystalline solid, Os\textsubscript{3}(CO\textsubscript{11})(\eta2-C\textsubscript{60})\textsubscript{1} (dark brown band, R\textsubscript{f} = 0.7, 44%). The MeCN derivative OS\textsubscript{3}(CO\textsubscript{10})(NCMe)(\eta2- C\textsubscript{60})\textsubscript{2} (R\textsubscript{f} = 0.5, 52%) and the phosphine-substituted complexes, Os\textsubscript{3}(CO\textsubscript{10})(PPPh\textsubscript{3})(\eta2-C\textsubscript{60})\textsubscript{3} (R\textsubscript{f} = 0.8, 60%) and Os\textsubscript{3}(CO\textsubscript{9})(PPPh\textsubscript{3})\textsubscript{2}(\eta2-C\textsubscript{60})\textsubscript{4} (R\textsubscript{f} = 0.5, 36%) were purified in the same way (green bands, hexane : toluene, 1:1) and isolated as black solids (Scheme 1). The double addition (C\textsubscript{60}=2Os\textsubscript{3}) products of 1-4 were also formed as minor products (ca. 10%) in these reactions; however, they were major products when 0.5 equiv. of C\textsubscript{60} was used. The double addition complexes are thermally much more unstable than the single addition complexes and are converted to the latter in solution at room temperature over periods up to 10 h. Complexes 1 and 2 are interconvertible either by decarbonylation of 1 with Me\textsubscript{3}NO-MeCN reagent at −50 °C or by exposure of 2 to CO gas (1 atm). Complex 2 reacts with PPPh\textsubscript{3} to afford 3, which undergoes further reaction with PPPh\textsubscript{3} to give 4 upon decarbonylation with Me\textsubscript{3}NO. All these transformations proceed in quantitative yields.

Complexes 2-4 are soluble in dichloromethane and 1-4 in aromatic solvents to form either brown (1) or green (2-4) solutions, but they are insoluble in pentane and hexane. Formulation of the C\textsubscript{60} derivatives 1-4 is supported by elemental analysis and by the molecular ion (M+) multiplet in the FAB positive ion MS of each compound. The M+ multiplet in the MS of 1-4 matches perfectly the calculated pattern (the highest peak in the M+ multiplet (m/z, found, calc’d): 1 (1600, 1600), 2 (1613, 1613), 3 (1834, 1834) and 4 (2068, 2068)).

Scheme 1 Reagents and conditions:

1. Os\textsubscript{3}(CO\textsubscript{11})(NCMe) + C\textsubscript{60} → Os\textsubscript{3}(CO\textsubscript{11})(\eta2-C\textsubscript{60})
2. Os\textsubscript{3}(CO\textsubscript{10})(NCMe\textsubscript{2}) + C\textsubscript{60} → Os\textsubscript{3}(CO\textsubscript{10})(NCMe)(\eta2-C\textsubscript{60})
3. Os\textsubscript{3}(CO\textsubscript{10})(PPPh\textsubscript{3}) + C\textsubscript{60} → Os\textsubscript{3}(CO\textsubscript{10})(PPPh\textsubscript{3})(\eta2-C\textsubscript{60})
4. Os\textsubscript{3}(CO\textsubscript{9})(PPPh\textsubscript{3})\textsubscript{2} + C\textsubscript{60} → Os\textsubscript{3}(CO\textsubscript{9})(PPPh\textsubscript{3})\textsubscript{2}(\eta2-C\textsubscript{60})

Fig. 1 Proposed structures of 1-4

Fig. 2 13C NMR spectrum (13C\textsubscript{60}toluene, 75 MHz, CO region, room temp.) of 1 with Cr(acac)\textsubscript{3} added as a shiftless relaxation reagent
The three lower-field (higher-intensities) resonances are considered to be due to three sets of the six axial carbonyl ligands and the rest are attributed to the five inequivalent equatorial carbonyl ligands. These data are entirely consistent with the low-temperature limit structure of 1, with \(\eta^2 \)-C\(_{60} \) occupying an equatorial position at an osmium centre. The \(^{13}\)C signals for the C\(_{60} \) moiety are too weak to be detected. The \(^1\)H NMR spectrum of 2 reveals two singlets due to MeCN at \(\delta \) 3.02 and 2.85 in a ratio of 2:1 indicating that 2 exists as two isomers. Upon addition of CD\(_2\)CN the two resonances for the major and minor isomers slowly (2 h) lose intensity at room temperature and are replaced by a sharp singlet at \(\delta \) 1.98 due to free MeCN, which is consistent with facile displacement of coordinated MeCN by the deuterated solvent.

In compound 2, the MeCN ligand may be coordinated at an axial site of an osmium atom as shown in Os\(_3\)(CO)\(_2\)\(_{2}\)(MeCN)\(_n\) (\(n = 1, 2 \))\(^{11}\) and the bulky \(\eta^2 \)-C\(_{60} \) ligand bonded to either one of the two inequivalent equatorial sites of an adjacent osmium atom producing two isomers. The double addition complexes are supposed to be para complexes, in which the Os\(_3\) triangle is bonded to opposite portions of C\(_{60} \) as previously shown in both C\(_{60}\)[Ir\(_2\)Cl\(_2\)(1,5-COD)]\(_2\)\(^{17}\) and C\(_{60}\)[Ir(CO)Cl(PMe\(_3\)Ph)\(_2\)]\(_2\).\(^{12}\) Only the double addition products have been observed in these bulky triosmium carbonyl clusters, although hexa-substituted mononuclear complexes have been reported in C\(_{60}\)[M(P\(_2\)E\(_3\)\(_2\))]\(_6\) (M = Pt, Pd).\(^{13}\)

The reactivities, fluxional processes and electrochemical properties of 1-4 are being investigated.

Received, 20th September 1994; Com. 4/05726K

Footnote

\(^{1}\) Selected data for 1: \(^{13}\)C NMR ([\(\text{H}_2\)]toluene, 25 °C) \(\delta \) C\(_{60} \) 183.3, 182.9, 181.7, 172.0, 171.9, 170.3, 168.8, 168.5; IR (CH\(_2\)Cl\(_2\)) \(\nu \) cm\(^{-1}\) 2122(m), 2074(s), 2059(m), 2038(vs), 2016(m), 2006(m), 1990(w); MS m/z, \(^{195}\)Os, FAB+ 1694(M\(^+\)). For 2: \(^1\)H NMR (CDCl\(_3\), 25 °C) \(\delta \) 3.02 (s, 3H, major isomer), 2.85 (s, 3H, minor isomer); isomer ratio \(\approx 2:1 \); IR (CH\(_2\)Cl\(_2\)) \(\nu \) cm\(^{-1}\) 2110(m), 2011(w), 2064(s), 2055(m), 2032(s), 2018(vs), 1988(m), 1958(w); MS m/z, \(^{195}\)Os, FAB+ 1617(M\(^+\)). For 3: IR (CH\(_2\)Cl\(_2\)) \(\nu \) cm\(^{-1}\) 2099(m), 2051(m), 2034(m), 2071(vs), 1993(m), 1975(sh); MS m/z, \(^{195}\)Os, FAB+ 1838(M\(^+\)). For 4: IR (CH\(_2\)Cl\(_2\)) \(\nu \) cm\(^{-1}\) 2109(w), 2083(w), 2072(w), 2051(m), 2017(s), 1999(vs), 1964(m), 1941(sh); MS m/z, \(^{195}\)Os, FAB+ 2072(M\(^+\)).

References